

Подготовка кадров в РОСБИОТЕХ: перспективы развития

Зав. кафедрой промышленного дизайна, технологии упаковки и экспертизы, Директор ЦКП «Перспективные упаковочные решения и технологии рециклинга», д.х.н., профессор Кирш И.А.

ОСНОВНАЯ ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ВЫСШЕГО ОБРАЗОВАНИЯ (программа академического бакалавриата)

29.03.03 ТЕХНОЛОГИЯ ПОЛИГРАФИЧЕСКОГО И УПАКОВОЧНОГО ПРОИЗВОДСТВА

Профили подготовки:

«Дизайн и технология упаковки»

«Конструирование и дизайн упаковки, брендинг»

«Промышленный дизайн и принтмедиатехнологии» **18.03.01 ХИМИЧЕСКАЯ ТЕХНОЛОГИЯ**

Профили подготовки: **«Экотехнологии и рециклинга полимеров и композитов»**

«Технология полимерных продуктов нефтегазохимии»

Экзамены 29.03.03: русский язык, математика профиль, на выбор: химия, информатика, физи

Экзамены 18.03.01: русский язык, химия, на выбор: математика профиль, информатика, физи

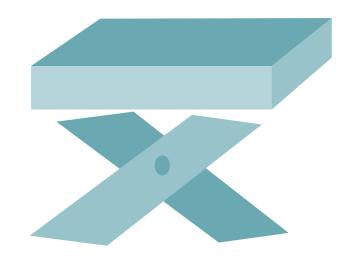
ОСНОВНАЯ ПРОФЕССИОНАЛЬНАЯ ОБРАЗОВАТЕЛЬНАЯ ПРОГРАММА ВЫСШЕГО ОБРАЗОВАНИЯ (программа академического магистратура, аспирантура)

29.04.03 ТЕХНОЛОГИЯ ПОЛИГРАФИЧЕСКОГО И УПАКОВОЧНОГО ПРОИЗВОДСТВА Исследовательская

Направленность (профиль) подготовки:

«Упаковочные решения и технологии рециклинга, устойчивое развитие»

Магистратура 2 года


2.6.11 Технология и переработка синтетических и природных полимеров

Аспирантура 4 года очная

Для профильных предприятий выполнение диссертации по запросу предприятия

ЦКП «Перспективные упаковочные решения» - реализация НИР-НИОКР проектов и платформа для подготовки специалистов высокого уровня квалификации

НОВАЯ лаборатория по испытаниям упаковки 3 октября 2024г.

В настоящее время ЦКП функционирует с материально-техническим обеспечением:

Лаборатория «Оптимизация упаковки и транспортные испытания» (ГК ГОТЭК) Лаборатории композитных материалов (ФЦП «Реализация прикладных НИР») Лаборатории современного промышленного дизайна и маркетинга

и образования новых лабораторий, открытых в 2024г

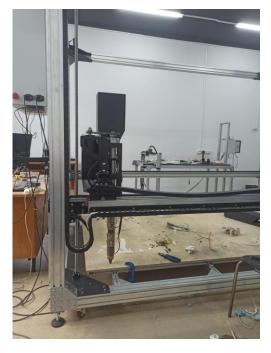
Лаборатория биополимеров и рециклинга упаковки (Приоритет 2030) Лаборатория «Карбоновый полигон – новые композиты» Лаборатория аддитивных технологий рециклинга

Новая лаборатория «Карбоновый полигон - центр композитов»

Активное развитие в 2024

Полимерные композиты, тканные и наполненные композиционные материалы, нанокомпозиты

Синтез низкомолекулярных добавок, в том числе ПАВ


Физическая и химическая модификация полимеров и смесей: обработка расплавов и растворов полимеров УЗ, обработка материалов СВЧ

Оптимизация составов специальных материалов

Новая лаборатория «Аддитивные технологии рециклинга»

Лаборатория биополимеров и рециклинга упаковки

Разработка и апробация уникальных методик

- 1. Способность к биоразложению метод Штурма, разработанная в университете (протокол № 1 от 19.09.2017 г., переутверждение 07.06.2019г.), соответствующей ASTM D 5209-92, 5247-92, ОСDЕ 301B, ОСDЕ 301 F, ГОСТ 32433-2013 «Методы испытаний химической продукции, представляющей опасность для окружающей среды. Оценка биоразлагаемости органических соединений методом определения диоксида углерода в закрытом сосуде». Испытания в аэробных условиях компостирования (с принудительной аэрацией) и в анаэробных условиях (без доступа кислорода воздуха).
- 2. Исследования упаковочных материалов в процессе многократной переработки моделирование процесса рециклинга

Многократная переработка полимеров - К цикл

Исполнители: «РОССИЙСКИЙ БИОТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ (РОСБИОТЕХ)» «Институт синтетических полимерных материалов им. Н.С. Ениколопова Российской академии наук» «Институт физической химии и электрохимии им. А.Н. Фрумкина Российской академии наук» Акционерное общество «Институт пластмасс им. Г.С. Петрова»

Объекты исследования - полимерные гранулы производства ООО «Сибур»:

- ПС: марка 585 сфер.гр 1197227;
- ПВХ: с пластификатором;
- ПЭТ: Чистый (Полиэф);
- ПЭНД (HDPE): Литьевая HD 45552 IM
- ПЭНД (HDPE): Экструзионно-выдувная HD 10530

LB

- ПЭНД (HDPE): Плёночная PE 10500 FE
- ПЭВД (LDPE): Плёночная 15803-020
- ПЭВД (LDPE): Плёночная LD 40251 FE
- ПП: Литьевой РР Н030 GР
- ПП: Экструзионный PP R015 TF

Лаборатория биополимеров и рециклинга упаковки

Оборудование для многократной переработки «экструзия- измельчение» полимеров

Экструдер для стренг

Экструдер для получения пленок

Экструдер для получения экспериментальных образцов (Институт Синтетических полимеров РАН)

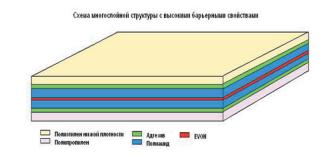
Экструдер для переработки ПВХ

Интервал температур переработки:

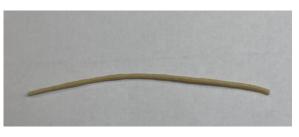
ПЭВД: 180 – 205 °С, ПЭНД: 180 - 220 °С, ПП: 215 – 225 °С, ПС:

190 – 200 °С, ПЭТФ: 250-265 °С, ПВХ: 160 – 175 °С

Технологические и эксплуатационные показатели полимеров в процессе вторичной переработки при введении стабилизаторов в различных условиях на протяжении 10 циклов остаются на уровне доверительного интервала (КС не более 20%), что свидетельствует о возможности использования вторичной переработки полимеров до 10 циклов для переработки в изделие без потери свойств.



Исследование при многократной переработке многослойной упаковки



Биоразлагаемые материалы

Растворы альгинаты, полимеров: коллаген,

поливиниловый спирт, хитазан

Модификация:

- Ультразвуковая обработка растворов
 - Добавки
 - УФ-излучение

Полимерное покрытие

Материал на основе синтетических биополимеров

Модификация УЗ расплавов полимеров

Смеси полимеров

Материал с регулируемым сроком разложения и антмикробной активностью

Альгинатные покрытия

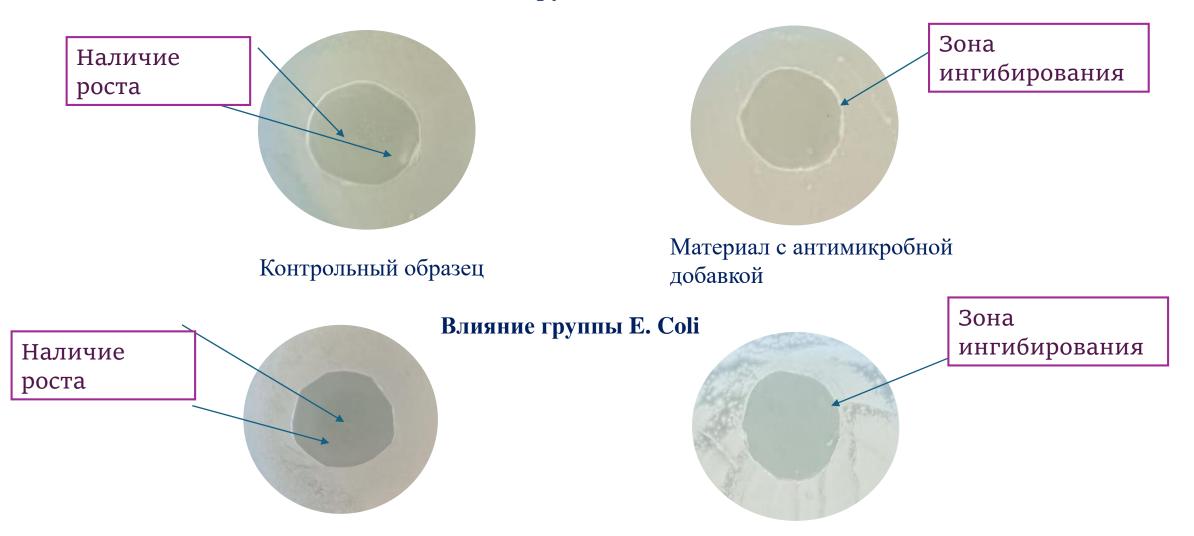
Композиция №1— **Profi Кейс A 100**, **Профессиональные биотехнологии (Россия)**

Композиция №3 - **Кристогель 7**, **Крист (Россия)**

Композиция №2 - **Agergel, Agersol (Польша)**

Композиция №4 — Sonjal casing 57, Sonjal (Франция).

Определение физико-механических характеристик



Биоразлагаемые полимерные материалы с антимикробными свойствами

Влияние группы В. Sub

ГОТЭКаборатория «Оптимизация упаков постимизация упаков постими упаков постими упаков постими упаков постими упаков постими у

и транспортных испытаний» - ГК

Определение физико-механических свойств материалов:

- ГОСТ 20683-97 «Картон тарный. Сопротивление торцевому сжатию»
- ГОСТ 9895-2013 «Определение сопротивлению сжатия. Метод испытания на коротком расстоянии»
- ГОСТ 304360-96 «Бумага и картон. Определение прочности при растяжении» на универсальной разрывной машине ИТС 8111

Биоразлагаемые материалы на основе картона

Цель

Задачи

Создание упаковочных материалов на основе целлюлозных композиций с повышенными барьерными свойствами

- Разработка способов модификации картона. Выбор и модификация покрытий для картона
 - Исследования полученных образцов (технологических и эксплуатационных свойств)
 - Определение областей применения разработанных изделий.

Результат

Материал с повышенными барьерными свойствами для упаковки продуктов питания и другой продукции

Объекты исследования

Картон марок: ОБ 190

HM 190 ОБ 190 (СИНИЙ)

HM 220 OБВ 190 (зеленый)

HM 260 ΠC 175

ΓΚ «ΓΟΤЭΚ»

- растворы и покрытия на основе поливинилового спирта
 - биополимерные системы

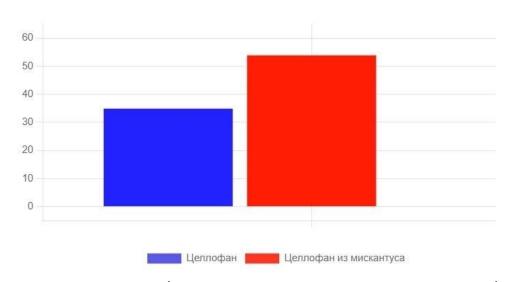
Картон с покрытием

Материал на основе мискантуса

ООО «Биотехкопозит»

Мискантус с покрытием на основе пищевых добавок

> Целлофан из лиственницы Целлофан из мискантуса


> > Картон с пленкой

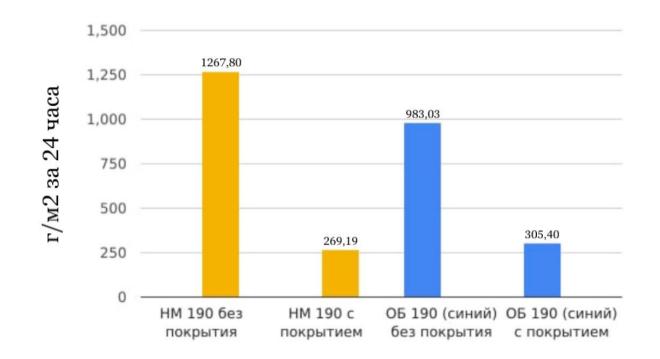
Покрытие на основе целлофана из мискантуса и лиственницы

Название материала	Паропроницаемость (г/м²)
Целлофан из лиственницы	1136.20
Целлофан из мискантуса	1142.70
Целлофан из лиственницы	865.14
покрытый ПВА	

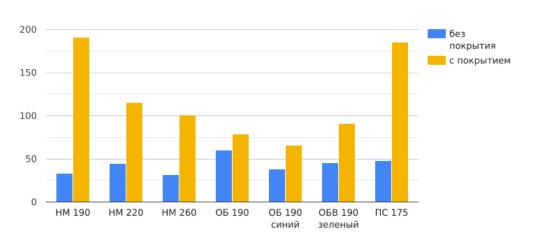
Паропроницаемость

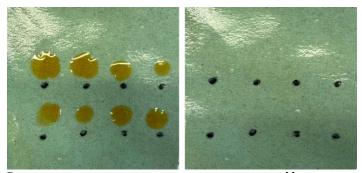
Название материала	Кислородопроницаемость
	(ΜΓ/ΜΛ)
Целлофан из лиственницы	6.01
Целлофан из мискантуса	12.49
Целлофан из лиственницы	7.92
покрытый ПВА	
Газопрони	цаемость

Сравнение целлофана из лиственницы и целлофана из мискантуса на максимальную прочность

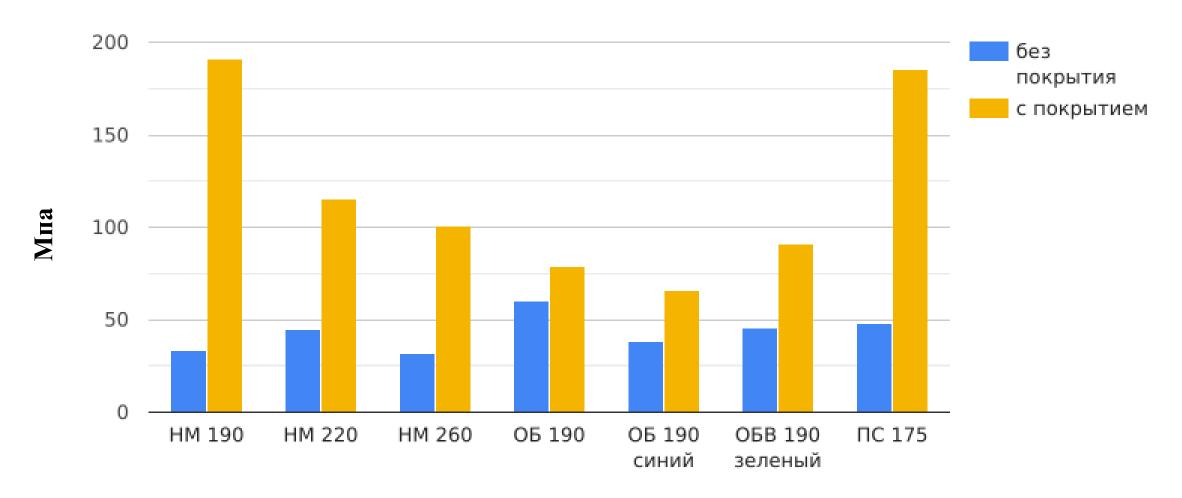


Прибор для определения газопроницаемости


Картон с покрытием на основе ПВС


Название	Контроль	Модифицированный
нм 190	1257.8	269.2
ОБ 190 (синий)	983.04	305.4

Паропроницаемость

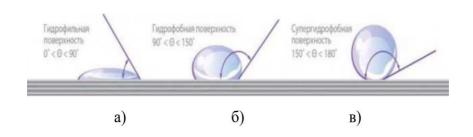

Деформационно-прочностные свойства

Определение жиростойкости методом пятна

Физико-механические исследования картона с покрытием на основе ПВС

Разрушающее напряжение картона

Биоразлагаемые материалы на основе картона и композиций из ПКМ

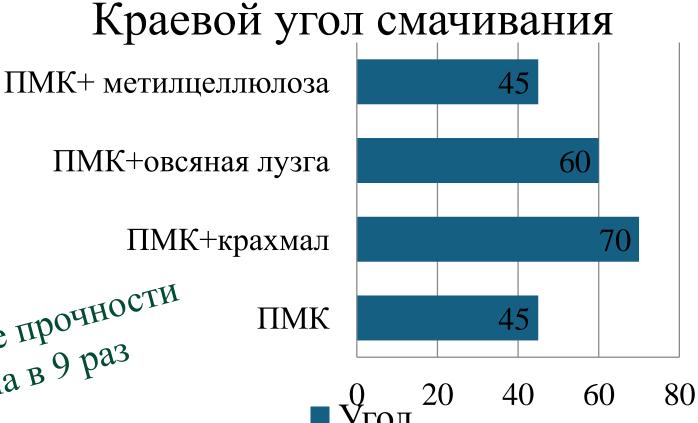

ПМК с крахмалом

ПМК

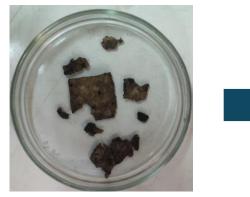
ПМК с овсяной лузгой

ПМК с МЦ

Адгезионные свойства


а) капля растекается по поверхности - острый угол; б) капля частично растекается по поверхности, образуя с ней некоторый тупой угол; в) капля остается на поверхности в виде шарика - тупой угол.

- тупой угол. ПМК+к


Увеличение прочности

картона в 9 раз

Метод биоразложения

8 суток 10 суток 16 сутки

48 день

Способность к биоразложению - метод Штурма, разработанный и модифицированный в университете (протокол № 1 от 19.09.2017 г., переутверждение 07.06.2019г.), соответствующей ASTM D 5209-92, 5247-92, OCDE 301B, OCDE 301 F, ГОСТ 32433-2013 «Методы испытаний химической продукции, представляющей опасность для окружающей среды. Оценка биоразлагаемости органических соединений методом определения диоксида углерода в закрытом сосуде». Испытания в аэробных условиях компостирования (с принудительной аэрацией) и в анаэробных условиях (без доступа кислорода воздуха).

Срок разложения материалов

- Композиции на основе мискантуса 24 48 дней
- ➤ Картон с ПМК 4 7 мес.
- ➤ Картон с ПМК и крахмалом 1,5 6 мес.
- ➤ Картон с ПМК и овсяной лузгой 1,5 8 мес.
- ➤ Картон с ПМК и МЦ 3 10мес.

мискантус

Новая лаборатория испытаний упаковки ООО «ОРБИС»

Кислородопроницаемость

ФИЗИКО-МЕХАНИЧЕСКИЕ СВОЙСТВА

Стойкость к раздиру и удару Коэффициент трения

Прочность и удлинение

при растяжении

Labthink

Оборудование для проведения исследований

- Экструзионные мини-линии для получения экспериментальных образцов (гранул, пленок), мини термопластавтомат для литьевых изделий.
- Аппарат для определения показателя текучести расплава термопластов ПТР-ЛАБ-02.
- Разрывные машины Labthink с программным обеспечением.
- Ударопрочность, коэффициент трения, показатель истираемости материалов Labthin
- Комплекс методов испытаний на физико-механических испытаний картона и бумаги (сжатие, изгиб, растяжение, сжатие коробки) Разрывные машины
- Прибор для определения кислородопроницаемости Labthink.
- Прибор для определения паропроницаемости с компьютером и программным обеспечением Labthink.
- Упаковочные полуавтоматы с опцией газонаполнения INDOKOR IVP-450/А для установ сроков

хранения пищевых продуктов в различных средах и под вакуумом.

- Микробиология. Определение токсичности. Счетчик ко
- Газохроматограф Хроматэк Кристалл 9000.1. Муфельная
- ИК спектроскопия FTIR
- Камера Тепло-холод, УФ камера
- ДСК (PAH)
- Электронная микроскопия (РАН).

Методы исследования

- Исследование барьерных свойств упаковочных материалов (жиростойкость, паропроницаемость, газопроницаемось (по кислороду), ароматопроницаемость, водопоглощение).
- Исследование миграции низкомолекулярных веществ по TP TC 005/2011 о безопасн упаковки.
- Определение качества изделия: определение плотности, влажности, содержание примесей.
- Исследование технологических параметров переработки полимерных композиций и структуры.
- Определения физико-механических свойств упаковок, пленок, изделий из полимер картона и бумаги,

комбинированных материалов и биополимерных систем.

- Исследование процессов биоразложения материалов, 3 метода (методы ГОСТ, ASTM
- включая метод по выделению углекислого газа и метод прогнозирования).
- Исследование биосовместимости и токсичности.
- Исследование антимикробных свойств, грибостойкости, определение сроков пищевой продукции (ГОСТ, МУК), (овощи, фрукты и другие органолептическ
- Исследование процессов деструкции полимерных материалов в различных ус
- Изучение химических свойств материалов, влияние модельных сред, включа пищевых

Анализ: полная цепочка разработок и исследований

Для R&D

Разработка и внедрение

Для производства

Апробация новых материалов и добавок, разработка упаковочных решений

Для ритейла

Тренды упаковки и кейсы

Для закупок и продаж

Дизайн, брендинг, маркетинг, ценообразование с минимизацией затрат

Для логистики и экологии

Оптимизация упаковки Дизайн состава материала Многократная переработка

Основные направления НИР

Nº	Направление
1	Разработка технологии переработки отходов упаковки Рециклинг – химическая утилизация – новые полимеры
2	Разработка функциональных упаковочных материалов Уровни барьерных и физико- механических свойств
3	Создание упаковочных материалов с антимикробными свойствами

N∘	Направление
	Разработка биоразлагаемых
	упаковочных материалов на основе
4	природных и синтетических полимеров
	с регулируемым срок разложения
	/полимеры биотехнологии
5	Защитные и съедобные покрытия
6	Дизайн структуры материала -
	оптимизация
	Комбинированные и многослойные
	материалы
7	Конструкция и дизайн упаковки
8	Аналитические исследования

Кирш Ирина Анатольевна

kirshia@mgupp.ru 8-916-173-21-58

